Lado B
Detectan ondas gravitacionales de agujero negro con estrella de neutrones
Los detectores Virgo en Europa y LIGO en Estados Unidos han registrado por primera vez ondas gravitacionales generadas por el llamado ‘sistema binario perdido’: una combinación de estrella de neutrones y agujero negro. Los dos eventos observados se denominan GW200105 y GW200115 por las fechas en las que se detectaron: 5 y 15 de enero de 2020
Por Agencia SINC @
29 de junio, 2021
Comparte

Hasta ahora se había detectado ondas gravitacionales producidas o bien por dos agujeros negros o bien por dos estrellas de neutrones, pero los detectores Virgo (localizado en Italia), LIGO (con dos instalaciones en EE UU) y el japonés KAGRA informan hoy en The Astrophysical Journal Letters de la primera observación directa de pares ‘combinados’ formados por un agujero negro y una estrella de neutrones.

El hallazgo se realizó en enero de 2020 cuando se detectaron dos señales gravitatorias emitidas por dos sistemas, en los cuales un agujero negro y una estrella de neutrones, girando uno alrededor de la otra, se fusionaron en un único objeto compacto. La existencia de estas parejas fue predicha por la comunidad astronómica hace varias décadas, pero hasta la fecha nunca habían sido observadas con seguridad, ya fuese por señales electromagnéticas o gravitatorias.

Los eventos GW200105 y GW200115 detectados en enero de 2020 representan las primeras observaciones de ondas gravitacionales generadas por una combinación de una estrella de neutrones y un agujero negro, el llamado ‘sistema binario perdido’

El 5 de enero de 2020, el detector Advanced LIGO en Livingston (Louisiana, EE UU) y el detector Advanced Virgo, observaron una onda gravitacional producida por las últimas órbitas (fase de espiral), antes de la fusión, de un par formado por una estrella de neutrones (EN) y un agujero negro (AN). En conjunto, ENAN.

Solo 10 días después, una segunda señal de onda gravitacional procedente de la fase de espiral y fusión de un sistema binario similar fue observada por los dos detectores de LIGO (tanto en el de Livingston como otro que opera en Hanford, estado de Washington) y el de Virgo.

Estos dos eventos, apodados como GW200105 y GW200115 por las fechas de sus detecciones, representan las primeras observaciones de ondas gravitacionales generadas por una combinación de una estrella de neutrones y un agujero negro, ya que dos señales gravitatorias anteriores (GW190814 y GW190426) habían sido consideradas candidatas ENAN, pero sin un nivel de confianza suficientemente elevado.

Los sistemas dobles de estrellas de neutrones se observaron por primera vez en la Vía Láctea en 1974 monitorizando pulsos de ondas de radio emitidos por estrellas de neutrones, conocidas como radio-púlsares.

“La comunidad astronómica ha dedicado décadas a buscar radio-púlsares orbitando alrededor de agujeros negros, pero no se ha encontrado ninguno en la Vía Láctea hasta ahora”, comenta Astrid Lamberts, investigadora del CNRS y miembro de la colaboración Virgo en los laboratorios Artemis y Lagrange, en Niza.

El sistema binario perdido

“Los pares de agujero negro y estrella de neutrones fueron de hecho para los astrónomos el ‘sistema binario perdido’ –destaca–. Con este nuevo descubrimiento, podemos finalmente comenzar a entender cómo muchos de esos sistemas existen, con qué frecuencia se fusionan, y por qué no hemos visto todavía ejemplos en la Vía Láctea”.

También puedes leer: Desarrollan detectores de radiación para explorar el universo

Las señales gravitatorias detectadas en enero codifican información valiosa sobre las características físicas de los sistemas, como la masa y la distancia de los dos pares de ENAN, así como sobre los mecanismos físicos que han generado estos objetos y han hecho que colapsen.

El agujero negro y la estrella de neutrones que originaron GW200105 son, respectivamente, de alrededor de 8,9 y 1,9 veces tan masivos como nuestro Sol y que su fusión tuvo lugar hace unos 900 millones de años

El análisis de la señal ha mostrado que el agujero negro y la estrella de neutrones que originaron GW200105 son, respectivamente, de alrededor de 8,9 y 1,9 veces tan masivos como nuestro Sol y que su fusión tuvo lugar hace unos 900 millones de años, cientos de millones de años antes de que los primeros dinosaurios aparecieran en la Tierra.

En el caso del evento GW200115, los científicos de Virgo y LIGO estiman que los dos objetos compactos tenían masas de unas 5,7 (para el AN) y 1,5 (para la EN) veces la masa del Sol y que se fusionaron hace casi mil millones de años.

La estimación de la masa más masiva en ambos casos cae dentro del intervalo de ajuste predicho para los agujeros negros formados en los modelos de evolución estelar. La masa más ligera es también consistente con las estrellas de neutrones y esos resultados indican que ambos sistemas detectados son pares ENAN, incluso si tienen diferentes niveles de confianza.

En este sentido, aunque la significancia estadística de GW200105 no es tan alta, la “forma” de la señal así como los parámetros inferidos de los análisis, conducen a los investigadores a creer que tiene un origen astrofísico.

Continuar leyendo en Agencia SINC

*Ilustración de portada: Carl Knox, OzGrav – Swinburne University

Comparte
Autor Lado B
Agencia SINC
Suscripcion